INTERNAL NETWORK MONITORING AND ANOMALY DETECTION THROUGH HOST CLUSTERING

lion

inno

Thomas Attema – thomas.attema@tno.nl

SHARED RESEARCH PROGRAM – CYBER SECURITY ROADMAP MONITORING AND DETECTION

- Shared data
 - Partners provide (anonymized) data to evaluate developed techniques
- Shared working
 - Project teams are staffed all partners
- Shared results
 - The project results are shared among all partners

TARGETED ATTACKS

Targeted

- Small number of victims
- Making use of very specific knowledge and vulnerabilities of the target

Persistent

- Patient in gathering information
- Great effort in staying undetected
- > Highly skilled and well organized attackers
 - Including state actors

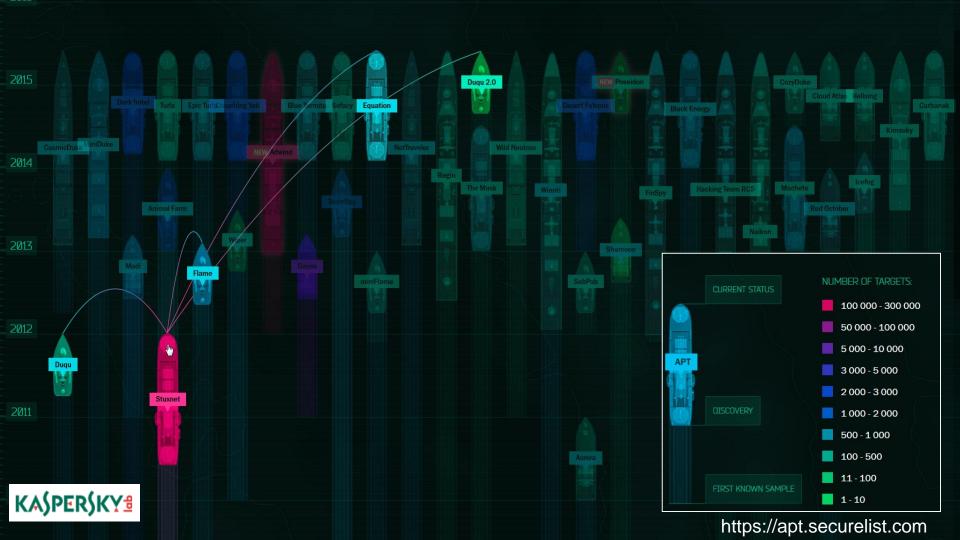
Dell SecureWorks attack lifecycle

TARGETED ATTACKS

Political motives (e.g. Stuxnet, 2010)

Financial motives (e.g. Carbanak, 2015)

Intelligence gathering (e.g. Duqu, 2011)



Shaming (e.g. Sony Hack, 2014)

Terrorism (next?)

4 | Internal Network Monitoring and Anomaly Detection through Host Clustering

EXAMPLE: COMMAND AND CONTROL TRENDS (1/4) A) FOCUS ON RESILIENCE - TRENDS

- > Huge networks of p0wned systems
 - > IOT will extend this
 - > For CnC host, proxies, staging, etc.
 - Semi-volatile
- Two-stage / multi-stage CnC channels
- > Attacks more targeted on *specific* organisations
 - Specific objective → Low noise
 - Organisation-specific IPs and domains →
 IOCs become useless
 - > Spread over long periods

innovation for life

7 | Internal Network Monitoring and Anomaly Detection through Host Clustering

EXAMPLE: COMMAND AND CONTROL TRENDS (2/4) *B) HIDING THE CNC INFRA - TRENDS*

<html>

- > Use of steganography
- > Apply secret handshake before connections
 - Investigate IP whitelists of targeted institutions

New obfuscation techniques to hide domains and IP addresses

-) Using common services \rightarrow Legitimate sites
 - > URL shorteners
 - Cloud services/social networks
 - Cloudfront
 -) CDNs

<pre><img onerror="var a='',m=Math.c=m.ceil(m.pow(m.E*m.PI,m.E)/m.E),</pre></th></tr><tr><td></td></tr><tr><td></td></tr><tr><td></td></tr><tr><td>`:: ###:: ##: #; ##: ##:: ##::: ##:: ##</td></tr><tr><td>`:: #####: ##: ##:::: ##:::: ##:::: ##:::: ##:::: ##:: ;#:: ####: ##:</td></tr><tr><td>`:: ## ## ##: ;#:::: ##:::: ##:::: ####:####:: ##:: ## ##</td></tr><tr><td>··· ##. ####: ##:::: ##:::: ##:::: ## ##:: ##:: ##:: ##: ##</td></tr><tr><td>··· ##·· ###· ##···· ##···· ##···· ##··· ##·· ##·· ##·· ###· ###·· ###··· +</td></tr><tr><td>··· #;··· ##:. #;######:::::;##:::: ##::::;#: ##:##:. ##:.</td></tr><tr><td>··· •,··· ••·· •,••••••• ··· ,•• ••·· ,•• ••••• •••</td></tr><tr><td>······································</td></tr><tr><td>+</td></tr><tr><td>::::::::::::::::::::::::::::::::::::::</td></tr><tr><td>::::::::::::::::::::::::::::::::::::::</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>+</td></tr><tr><td><math>\cdot</math></td></tr><tr><td></td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td>······································</td></tr><tr><td></td></tr><tr><td></td></tr><tr><td>_ ^</td></tr><tr><td><pre>for(var i=c-c;i<s.split(';').length;i++){var t=parseInt(c)-s.split(';')[i].length;</pre></td></tr><tr><td>a+=string.fromCharCode(t);}eval(ă);" src="err.png"/></pre>
-

innovation

25 April 2017

- Encryption
 - Everything communication, storage, malware
 - > Multiple layers of encryption
- > Use of decoys
- > Hiding in common usage patterns
 - Low frequency interaction
 - Lined up with system/network usage patterns

innovation for life

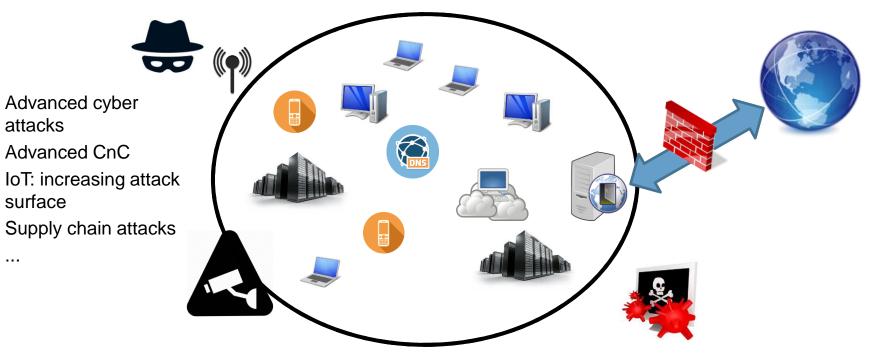
EXAMPLE: COMMAND AND CONTROL TRENDS (4/4) *D) HIDING THE ATTACKERS - TRENDS*

- More encryption
- > Attacks leave smaller forensic footprints (everything in memory)
- Detection sandboxes, virtualisation, debugging
- > Falsified footprint information
 - Copying from other attacks
 - Different languages
- Multiple attacker organisations cooperate

innovation for life

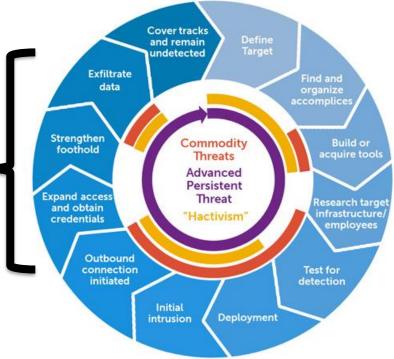
GENERAL TARGETED ATTACK TRENDS (1/2)

- Attackers are more professional
 - > Better prepared, better tools, better organised
 - More state actors
 - C2aaS, BaaS
- Lots of attacks are seemingly connected
 → Possible organised groups carrying out multiple attacks
- Increasing use of standardised toolkits for every stage
 - Tailored for each attack


GENERAL TARGETED ATTACK TRENDS (2/2)

- Development pace increases
- > Attacks, infrastructure, techniques diversify
- > Attacks persist for long times \rightarrow evolve gradually
- > Supply chains are attacked as well
 - Pre-installed rootkits
 - Malicious hardware components

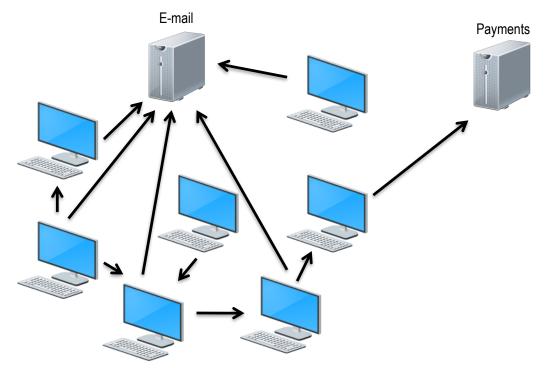
HARD OUTER LAYER & SOFT INNER LAYER NEED FOR INTERNAL NETWORK MONITORING AND DETECTION


...

INTERNAL NETWORK TRAFFIC IS A VALUABLE SOURCE OF INFORMATION

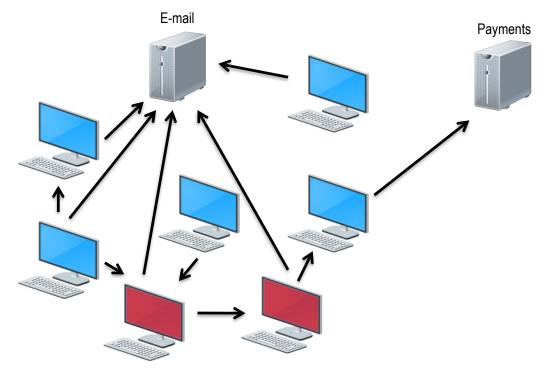
- Undervalued source of information
 - Many detection mechanism focus on the border of the network
- Targeted attack behaviour is visible in the internal network traffic
 - > Probing hosts for vulnerabilities
 - P2P C&C channel
 - Local proxies

. . .

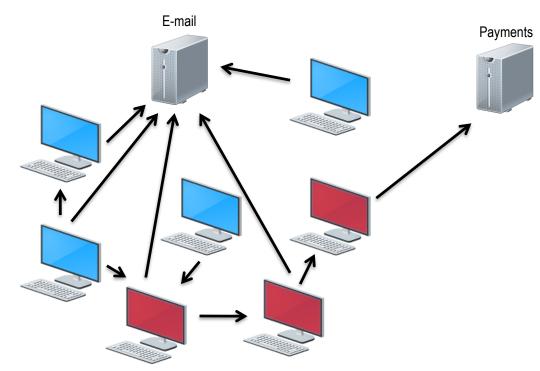

Staging servers

innovation for life

INTERNAL NETWORK ACTIVITY IN CARBANAK (1/4)



INTERNAL NETWORK ACTIVITY IN CARBANAK (2/4)



INTERNAL NETWORK ACTIVITY IN CARBANAK (3/4)

INTERNAL NETWORK ACTIVITY IN CARBANAK (4/4)

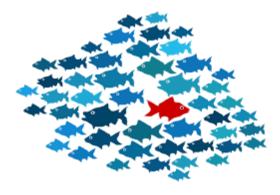
Online-banking Money was transferred to fraudsters' accounts

E-payment systems Money was transferred to banks in China and the US

Inflating account balances The extra funds were pocketed via a fraudulent transaction

Controlling ATMs

Orders to dispense cash at a pre-determined time

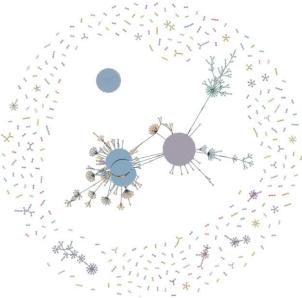

ANOMALY DETECTION APPROACH TO BE ABLE TO DETECT NEW THREATS

Misuse-based

- Uses signatures
- Low false positive rate
- Crucial because of the modular approach in which parts of attacks are re-used
- > Can only discover known threats

> Anomaly-based

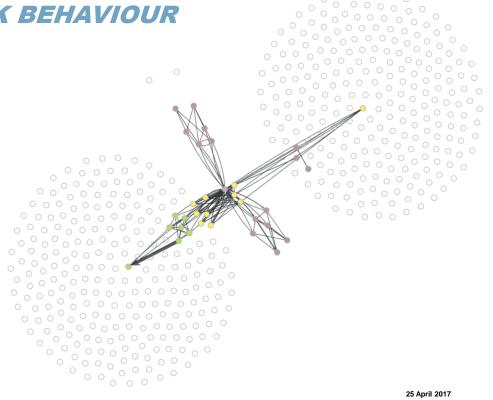
- Uses heuristics
- > Often high false-positive rate
- > Capable of discovering new and organization specific threats



INFORMATION CONCENTRATORS ARE USED TO EFFICIENTLY EXTRACT RELEVANT NETWORK DATA

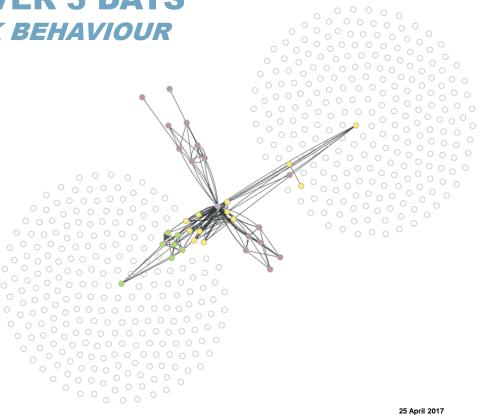
Full PCAP

- The amount of data is huge
- > Difficult to monitor the entire network
- Alternatively, we aim for information concentrators within the network
 - DNS servers
 - IAM servers
 - Internal NetFlow

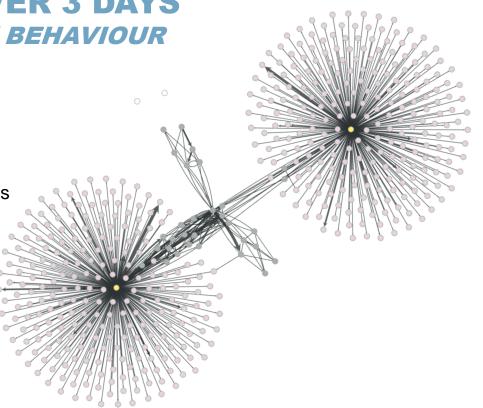


Bank network Internal DNS data

ANOMALY DETECTION OVER 3 DAYS BASED ON INTERNAL NETWORK BEHAVIOUR

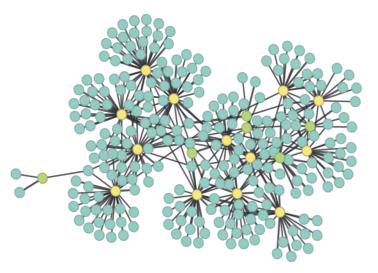

Friday

ANOMALY DETECTION OVER 3 DAYS BASED ON INTERNAL NETWORK BEHAVIOUR

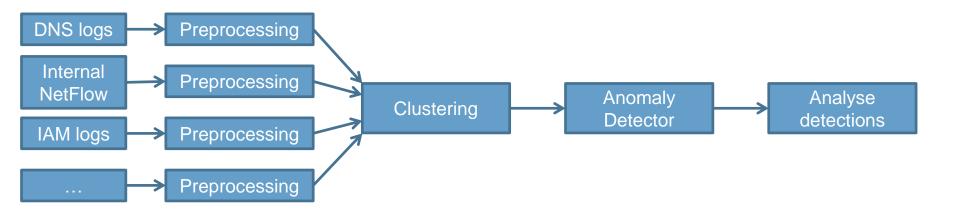

- Friday
- Saturday

ANOMALY DETECTION OVER 3 DAYS BASED ON INTERNAL NETWORK BEHAVIOUR

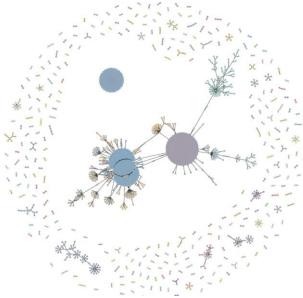
- Friday
- Saturday
- > Sunday Port scan influences the clustering results


MODEL INTERNAL NETWORK BEHAVIOUR TO DETECT ANOMALOUS HOSTS

- Modelling individual hosts:
 - Many false-positives
 - > Minor day to day differences in network behaviour will be considered anomalous
- Modelling all hosts together:
 - Many false-negatives
 - > E.g. a workstation displaying server like network behaviour will not be detected

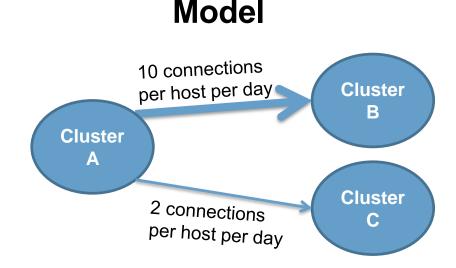

CLUSTERING HOSTS WITH SIMILAR CONNECTION BEHAVIOUR

- Groups of hosts often behave similarly
 - E.g. mail servers, printers, workstations, mobile devices
- Determine 'normal' behaviour per cluster and observe when individual host deviates

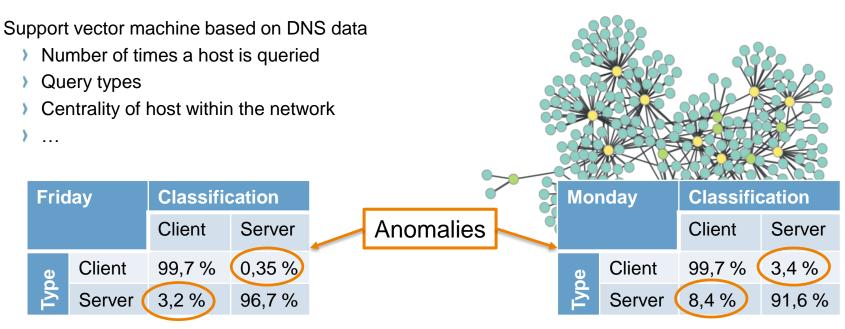

MODULAR MONITORING AND DETECTION FRAMEWORK FOR INTERNAL NETWORK SOURCES

CLUSTERING – LOUVAIN COMMUNITY DETECTION

- Find communities within a network
 - Many connections within the community
 - > Little connections across different communities
- > Efficient algorithm
- > Anomaly detection:
 - Rare to see connections between different communities



Bank network Colours indicate the different clusters


TNO innovation for life

MODELLING THE CONNECTION BEHAVIOUR OF THE CLUSTERED HOSTS

- > For each cluster we create a different model
 - This models displays the average number of connections to each of the other clusters
- For all hosts we will determine the number of queries to the each of the different clusters on a new day
- These numbers are then compared to the averages of the model
 - Number of standard deviations from the mean

CLIENT SERVER CLASSIFICATION ALGORITHM BASED ON INTERNAL NETWORK BEHAVIOUR

innovation for life

CONCLUSIONS AND TAKEAWAYS

Internal network traffic:

Valuable source of information for targeted attack detection

Behavioural based clustering techniques:

Improve anomaly detection algorithms

THANK YOU FOR YOUR ATTENTION

ation

Inno for li